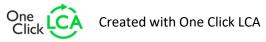


ENVIRONMENTAL PRODUCT DECLARATION


IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

Roof Inlets – Metal Coated Steel, Ekovent AB

EPD HUB, HUB-3774

Published on 10.08.2025, last updated on 10.08.2025, valid until 09.08.2030

GENERAL INFORMATION

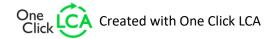
MANUFACTURER

Manufacturer	Ekovent AB
Address	Mejselgatan 7, Vellinge, Sweden
Contact details	info@ekovent.se
Website	www.ekovent.se

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Van Dong
EPD verification	Independent verification of this EPD and data, according to ISO 14025:
	☐ Internal verification ☐ External verification
EPD verifier	Haiha Nguyen, as an authorized verifier acting for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may


not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Roof inlets – Metal coated steel
Additional labels	EKO-T, EKO-TD, EKO-TDH, EKO-TR
Product reference	-
Place of production	Vellinge, Sweden
Period for data	Calendar year 2023
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3	N/A

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg of roof inlets
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO₂e)	2,82E+00
GWP-total, A1-A3 (kgCO ₂ e)	2,78E+00
Secondary material, inputs (%)	14,6
Secondary material, outputs (%)	69
Total energy use, A1-A3 (kWh)	8,16
Net freshwater use, A1-A3 (m³)	0,01

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

EKOVENT is one of Sweden's leading companies and has for more than 50 years developed, manufactured, and marketed products for ventilation and fire protection.

PRODUCT DESCRIPTION

EKO Roof Inlets are designed for the installation of roof hoods or roof fans. As standard, the roof inlets are made of ZincMagnesium ZM120, with 50 mm high-density internal insulation and an internal perforated metal sheet. The roof inlets can also be delivered with 100 mm high-density internal insulation. The standard length is 800 mm (customizable). Roof inlets can be supplemented with sound reduction baffles.

We offer roof inlets in different series:

- **EKO-T:** Used with intake or exhaust air roof hoods and roof fans.
- **EKO-TD:** Used with combined intake and exhaust air roof hoods with simultaneous supply and exhaust air.
- **EKO-TDH:** Used with double intake or exhaust air roof hoods.
- **EKO-TR:** Used with circular intake or exhaust air roof hoods.

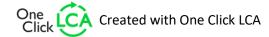
Further information can be found at www.ekovent.se.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	81	EU
Minerals	19	EU

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate


Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0,011

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg of roof inlets
Mass per declared unit	1 kg
Functional unit	-
Reference service life	30 years

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct s	tage		mbly age			U	se sta	ge			Er	nd of I	ife sta	ge	Beyond the system boundaries				
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4					
×	×	×	×	×	MND	MND	MND	MND	MND	MND	MND	×	×	×	×		×			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling		

Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

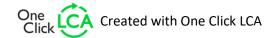
The raw materials and ancillary materials are transported to the production facility of Ekovent AB. It is assumed that all transport is carried out using lorries, with transport distances calculated from the suppliers' warehouses to the manufacturing site. After quality inspection at the production facility, steel components undergo cutting, punching, bending, and welding, while insulation undergoes cutting before assembly.

The power required to produce the fire damper is sourced from 100% wind power, the facility is heated by biogas, and all production waste is transported by lorries to a recycling company. The finished product is packed in a manner appropriate for its specific size, using materials such as wooden pallets, plastic packaging film, and cardboard.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions. A4 includes the transportation of the product and its packaging, shipped on pallets, to the installation site. An average transportation distance of 425 km is assumed.

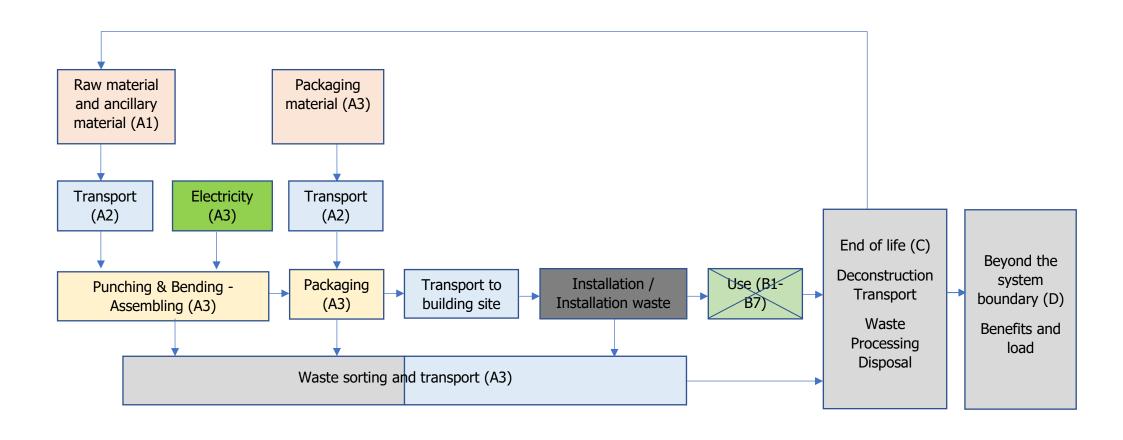
The installation process (A5) is included and covers the energy use of 0.1 kWh per kg of product, based on the assumption of using an electric drill. There are no material losses during installation, and the environmental impact is limited to minimal electricity consumption. Waste management of the packaging is also included in A5. The cardboard packaging is assumed to be 90% recycled and 10% landfilled, the plastic packaging film 30% recycled and 70% incinerated, while the wooden pallet is incinerated with energy recovery.


PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase. Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

Energy for deconstruction is included in C1. The transportation distance to the local recycling center is assumed to be 50 km, and the transportation method is assumed to be by lorry in C2.


Activities related to steel recycling are included in C3 and C4. For the steel content, a recycling rate of 85% and a landfill rate of 15% have been assumed (World Steel 2020). Module D includes the environmental impacts of steel recycling. A conservative assumption has been made that isolation is directed to landfill. The benefits and loads from energy recovery processes for packaging materials are included in Module D.

MANUFACTURING PROCESS AND SYSTEM BOUNDARY

LIFE-CYCLE ASSESSMENT

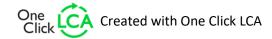
CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	Allocated by mass or volume
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

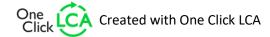

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	N/A

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data.



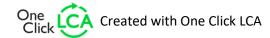
ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO₂e	2,77E+00	1,54E-02	-9,15E-03	2,78E+00	9,86E-02	5,77E-02	MND	3,68E-04	9,49E-03	1,56E-02	2,65E-03	-1,01E+0						
GWP – fossil	kg CO₂e	2,77E+00	1,53E-02	3,43E-02	2,82E+00	9,85E-02	1,37E-02	MND	3,30E-04	9,49E-03	1,56E-02	2,65E-03	-1,01E+00						
GWP – biogenic	kg CO₂e	0,00E+00	0,00E+00	-4,36E-02	-4,36E-02	0,00E+00	4,36E-02	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
GWP – LULUC	kg CO₂e	3,58E-04	6,73E-06	1,79E-04	5,44E-04	3,54E-05	3,73E-04	MND	3,71E-05	3,41E-06	1,92E-05	9,52E-07	2,97E-04						
Ozone depletion pot.	kg CFC-	1,13E-08	2,34E-10	6,29E-10	1,21E-08	1,96E-09	1,79E-10	MND	9,90E-12	1,89E-10	2,10E-10	8,13E-11	-5,88E-09						
Acidification potential	mol H⁺e	3,46E-02	5,03E-05	2,02E-04	3,49E-02	2,05E-04	7,93E-05	MND	4,05E-06	1,97E-05	1,86E-04	2,63E-05	-4,60E-03						
EP-freshwater ²⁾	kg Pe	9,27E-06	1,18E-06	1,74E-05	2,78E-05	6,63E-06	4,54E-06	MND	2,93E-07	6,39E-07	1,00E-05	3,25E-06	-4,32E-04						
EP-marine	kg Ne	1,45E-03	1,63E-05	5,16E-05	1,51E-03	4,92E-05	2,51E-05	MND	5,97E-07	4,74E-06	4,11E-05	7,25E-06	-1,05E-03						
EP-terrestrial	mol Ne	1,84E-02	1,77E-04	5,08E-04	1,91E-02	5,31E-04	2,44E-04	MND	6,10E-06	5,12E-05	4,64E-04	7,83E-05	-1,28E-02						
POCP ("smog") ³)	kg NMVOCe	4,80E-03	7,48E-05	1,93E-04	5,07E-03	3,41E-04	6,68E-05	MND	1,62E-06	3,29E-05	1,38E-04	2,85E-05	-3,82E-03						
ADP-minerals & metals ⁴)	kg Sbe	1,23E-01	4,36E-08	6,08E-07	1,23E-01	3,28E-07	4,15E-07	MND	3,97E-08	3,16E-08	1,11E-06	4,92E-09	-9,67E-06						
ADP-fossil resources	MJ	2,41E+01	2,22E-01	5,64E-01	2,49E+01	1,39E+00	5,03E-01	MND	4,42E-02	1,34E-01	2,09E-01	6,26E-02	-9,17E+00						
Water use ⁵⁾	m³e depr.	1,97E-01	1,10E-03	1,59E-02	2,14E-01	6,89E-03	3,13E-02	MND	2,44E-03	6,64E-04	3,76E-03	3,21E-04	-1,78E-01						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1


Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Particulate matter	Incidence	4,84E-08	1,50E-09	2,84E-09	5,28E-08	7,26E-09	8,74E-10	MND	3,37E-11	6,99E-10	2,52E-09	4,40E-10	-7,53E-08						
Ionizing radiation ⁶⁾	kBq 11235e	2,87E-03	2,02E-04	3,30E-03	6,38E-03	1,79E-03	3,18E-02	MND	3,17E-03	1,72E-04	1,77E-03	7,06E-05	3,58E-02						
Ecotoxicity (freshwater)	CTUe	7,38E-01	3,12E-02	2,06E-01	9,76E-01	1,84E-01	8,48E-02	MND	5,54E-03	1,78E-02	1,22E-01	3,11E-02	-2,50E+00						
Human toxicity, cancer	CTUh	4,96E-10	2,54E-12	3,45E-11	5,33E-10	1,65E-11	1,31E-11	MND	6,53E-13	1,59E-12	1,39E-11	9,58E-13	-2,14E-10						
Human tox. non-	CTUh	1,73E-08	1,43E-10	7,49E-10	1,82E-08	8,77E-10	7,65E-10	MND	3,41E-11	8,45E-11	9,46E-10	5,59E-11	-9,76E-09						
SQP ⁷⁾	-	2,17E+00	2,15E-01	3,86E+00	6,25E+00	8,38E-01	1,33E-01	MND	1,04E-02	8,07E-02	4,07E-01	1,45E-01	-1,84E+01						

⁶⁾ EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

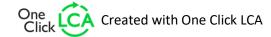
USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	1,57E+00	3,12E-03	2,90E+00	4,47E+00	2,43E-02	- 3,38E+00	MND	3,03E-02	2,34E-03	3,90E-02	1,11E-03	-4,17E+00						
Renew. PER as material	MJ	0,00E+00	0,00E+00	4,28E-01	4,28E-01	0,00E+00	-4,28E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	1,57E+00	3,12E-03	3,33E+00	4,90E+00	2,43E-02	- 3,81E+00	MND	3,03E-02	2,34E-03	3,90E-02	1,11E-03	-4,17E+00						
Non-re. PER as energy	MJ	2,42E+01	2,22E-01	4,60E-01	2,49E+01	1,39E+00	4,17E-01	MND	4,42E-02	1,34E-01	2,09E-01	6,26E-02	-9,17E+00						
Non-re. PER as material	MJ	0,00E+00	0,00E+00	9,72E-02	9,72E-02	0,00E+00	-9,72E-02	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-2,70E-02						
Total use of non-re. PER	MJ	2,42E+01	2,22E-01	5,57E-01	2,50E+01	1,39E+00	3,20E-01	MND	4,42E-02	1,34E-01	2,09E-01	6,26E-02	-9,20E+00						
Secondary materials	kg	1,46E-01	9,53E-05	6,78E-03	1,53E-01	6,44E-04	1,76E-04	MND	8,64E-06	6,20E-05	2,55E-04	1,93E-05	5,61E-01						
Renew. secondary fuels	MJ	0,00E+00	1,21E-06	4,28E-03	4,28E-03	8,14E-06	7,77E-07	MND	3,93E-08	7,84E-07	1,19E-05	3,62E-07	1,39E-03						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	6,37E-03	3,26E-05	3,61E-04	6,76E-03	1,89E-04	6,28E-04	MND	5,80E-05	1,82E-05	1,11E-04	-5,15E-04	-2,19E-03						

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste	kg	2,96E-03	3,71E-04	4,37E-03	7,70E-03	2,01E-03	1,87E-03	MND	4,51E-05	1,94E-04	1,37E-03	9,49E-05	-3,30E-01						
Non-hazardous waste	kg	1,13E-01	6,95E-03	1,45E-01	2,65E-01	4,25E-02	2,24E-01	MND	1,49E-03	4,10E-03	4,94E-02	6,80E-01	-2,58E+00						
Radioactive waste	kg	1,73E-04	4,96E-08	8,40E-07	1,74E-04	4,44E-07	6,80E-06	MND	6,78E-07	4,28E-08	4,55E-07	1,73E-08	9,35E-06						


END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	3,83E-06	0,00E+00	0,00E+00	3,83E-06	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	2,39E-02	0,00E+00	1,00E-01	1,24E-01	0,00E+00	1,76E-02	MND	0,00E+00	0,00E+00	6,90E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,06E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,17E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Heat	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,15E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – GWP-GHG

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	2,77E+00	1,54E-02	3,45E-02	2,82E+00	9,86E-02	1,41E-02	MND	3,68E-04	9,49E-03	1,56E-02	2,65E-03	-1,01E+00						

⁹⁾ This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterisation factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

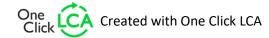
- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- · The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.


I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

HaiHa Nguyen, as an authorized verifier acting for EPD Hub Limited 07.08.2025

